
Ak: An Audio Toolkit for Tcl/Tk

Andrew C. Payne

Digital Equipment Corporation

Cambridge Research Lab

Abstract

Ak is an audio extension for Tcl built on top of

the AudioFile System. Ak provides mechanisms for

file playback, recording, telephone control, and synchro-

nization.

1 Introduction

AudioFile is a network-transparent, device inde-

pendent audio system [1]. AudioFile is modeled after

the X Window System: servers run on systems with au-

dio hardware, and a library of client routines provide

a programming interface for applications. The library

includes routines to play and record audio samples, to

manipulate devices (gain controls, input/output enables),

and to control telephone devices. AudioFile also imple-

ments events, such as ring, hookswitch, and tone detec-

tion.

This paper describes work in progress on Ak, a

Tcl audio extension that is built on top of AudioFile.

Ak is designed to be simple, yet general and flexible.

Simple applications should be easy to write, but sophis-

ticated applications should still be possible. Ak provides

the basic functions, such as playback and recording, as

well as a convenient framework for implementing new

functions. Ak also provides a powerful mechanism for

clients that need synchronization.

Ak is similar to the PhoneScript Tcl extension [2],

but Ak is designed to be much more general purpose

and not restricted to just telephone applications. The

remainder of this paper describes Ak’s programming

interface and implementation.

2 Basic Operations

Ak has three basic abstractions: server connec-

tions, device contexts, and requests. Server connections

are to AudioFile servers on other machines (or the local

machine). Device contexts represent a particular device

on a server, with a set of context attributes (playback

and record gain, sample type, little/big endian data). Re-

quests are operations, such as file playback or recording,

that are executed in some device context. This section

describes the Tcl commands that implement these ab-

stractions.

2.1 A Word About Time

First, it is important to mention the role time plays

in AudioFile and Ak. Each device maintains a clock:

an integer counter that increments once per sample pe-

riod. Clients are responsible for explicitly specifying

the time of record and playback requests. By specifying

the timing appropriately, clients can generate continuous

playback and record streams. Consider a playback ap-

plication, for example, that reads blocks of 100 samples

from a file and sends them to the audio device. If the

application plays a block of samples at time t, the next

block would start at time t + 100. A record application

would schedule requests in a similar fashion to obtain a

contiguous stream of samples.

Exposing time to clients greatly simplifies many

synchronization problems. Since the clients can control

exactly when the sound is going to emerge, they can

implement whatever level of synchronization needed.

Clients can read the times and synchronize the audio

clock with other clock domains, such as the X server or

other audio devices.

AudioFile’s model of device time is carried through

to Ak: all requests are scheduled in the device time for

the audio device. Times are represented using conve-

nient string descriptors. For example, the string “now”

represents the current time. Offset modifiers are permit-

ted, with units in samples or time intervals. For example,

“now +5s” refers to a time 5 seconds from the current

time. Ak automatically converts the time offsets into

sample counts, based on the device’s sampling rate.

2.2 Connections, Contexts, and Requests

The audioserver command opens server con-

nections. It takes two arguments: the name of the server

connection and the hostname of the server. For example,

1

audioserver main "north-fork:0"

opens a connection named main to the server on the

machine north-fork. The name of the server con-

nection is registered as a new Tcl command, which is

used to manipulate the connection.

Once the connection is established, device con-

texts may be created using the server command. For

example, this command:

main context room-device -device 1

creates a context named room-device for audio de-

vice 1 on the server specified by main. The context

name is registered with the Tcl interpreter as a new com-

mand.

The context command has a number of options to

query and manipulate the device. There are options to

retrieve the sample rate, sample type, input and output

configurations, and other information about the device.

For telephone devices, there are commands to manipu-

late the telephone hookswitch and dial the phone. This

example takes the telephone off hook and dials for help:

phone-dev hook off

phone-dev dial "911"

Requests are created in device contexts. Request

types include playback, record, tone generation, pass-

through (sending audio between two servers), and ac-

tion (a command scheduled to execute at some future

time). Requests are created using the context create

command, which returns a unique request-id that can be

used to manipulate the request after it is created. Here

is an example of a play file request:

set req [room-device create play \

"hello.au" -start {now +5s} \

-stop {now +6s} -offset {+10s}]

This example schedules a request to play one second of

audio from the file “hello.au”, starting in 5 seconds,

from an offset 10 seconds into the file. The returned

request id is stored in the variable req. The play request

has a variety of options, including a way for commands

to be executed at the beginning, the end, and on regular

tick intervals.

This is an example of an action request, which

schedules a command to be executed 5 seconds from

now:

room-device create action \

"puts stdout BANG!" -at {now +5s}

Note that actions are scheduled using the audio device’s

clock. This provides a simple, yet powerful, mecha-

nism for synchronizing to audio. For example, actions

could be used to update a screen animation in sync with

playback audio.

Once created, requests can be manipulated with

the reqconfig command. For example, this com-

mand halts the previous play request “mid-stream” by

changing the stop time:

room-dev reqconfig $req -stop {now}

Meaningless configuration requests, such as modifying

the start time for a request that has already started, gen-

erate an error.

2.3 Events

AudioFile devices may generate events that are

sent to interested clients. Ak allows commands to be

bound to events in a device context. This example picks

up the phone whenever it rings (phone-dev is a context

for a telephone device):

phone-dev bind <RingStart> \

"phone-dev hook off"

Ak performs substitutionson the bound command before

it is executed. For example, for the <DTMFStart>

event (generated when a Touch-ToneTM is detected),

the string ‘%d’ is substituted with the keyed digit.

3 Implementation

Currently, Ak consists of about 2500 lines of C.

About 2000 lines are for general routines and common

code. The remaining 500 lines implement the play re-

quest. The implementations of the other request types

are in progress.

Ak’s request types are implemented in a flexible

manner, much like Tk’s canvas item types. A type table

contains an entry for each request type, with informa-

tion including pointers to procedures to implement the

basic request operations: create, configure, and delete.

Adding new types is straightforward.

Ak hides many of the details of the underlying

implementation. For example, most AudioFile servers

buffer only about four seconds of audio. Therefore, a

large play request must be broken into smaller chunks

that get written to the server at regular intervals. Simi-

larly, a large record request would have to read samples

from the server at regular intervals.

To simplify the implementation, Ak provides a

2

scheduler that allows procedures to be executed at ar-

bitrary audio times. For example, a playback request

might schedule an update task to run every 1000 sam-

ples. Having the scheduler run in audio time hides details

like the sample rate and clock drift. The scheduler uses

a priority queue, based on device audio time. For each

device context, an update task reads the next item from

the queue, executes it, and reschedules the next update

using Tk’s timer routines.1 The update task fires at least

once a minute, even if there are no tasks to execute, to

compensate for any drift between the system clock and

the audio clock.

4 Conclusion

Hopefully, Ak will do for audio what Tk has done

for X. Together, Ak and Tk provide a powerful and

flexible system for developing multimedia applications.

Ak is being used to implement a full-featured tape deck,

multimedia presentations and tutorials, and a telephone

inquiry system.

There is still a lot of work ahead. The major tasks

include:

� Finish implementing request types

� A tagging mechanism for requests (which will be

useful for manipulating whole sets of requests at

once)

� More applications!

A beta-version should be finished this summer,

with a source kit available by anonymous FTP.

References

[1] Thomas M. Levergood, Andrew C. Payne, James

Gettys, G. Winfield Treese, and Lawrence C. Stew-

art. AudioFile: A network-transparent system for

distributed audio applications. In USENIX Summer

1993 Conference Proceedings. USENIX, 1993. To

appear.

[2] Stephen A. Uhler. PhoneStation, moving the tele-

phone onto the virtual desktop. In USENIX Winter

1993 Conference Proceedings, 1993.

Author Information

Andrew Payne is a research associate at Digital’s

Cambridge Research Lab in Cambridge, Massachusetts.

1This is the only major Tk subroutine used by Ak. Other Tk rou-

tines are used for signaling background errors and parsing arguments.

With suitable replacements for these routines, Ak could be made inde-

pendent of Tk.

His interests include signal processing, speech, and user

interfaces. He can be reached via e-mail at:

payne@crl.dec.com

3

